Etcd 最新版本已经提供了支持分布式锁的基础接口(可见官网说明),但本文并不局限于此。
本文将介绍两条实现分布式锁的技术路线:
两条路线差距甚远,建议读者先看路线 1,以便了解 Etcd 实现分布式锁的细节。
据官网介绍,Etcd 是一个分布式,可靠的 Key-Value 存储系统,主要用于存储分布式系统中的关键数据。初见之下,Etcd 与 NoSQL 数据库系统有几分相似,但作为数据库绝非 Etcd 所长,其读写性能远不如 MongoDB、Redis 等 Key-Value 存储系统。“让专业的人做专业的事!” Ectd 作为一个高可用的键值存储系统,有很多典型的应用场景,本文将介绍 Etcd 的优秀实践之一:分布式锁。
目前,可实现分布式锁的开源软件有很多,其中应用最广泛、大家最熟悉的应该就是 ZooKeeper,此外还有数据库、Redis、Chubby 等。但若从读写性能、可靠性、可用性、安全性和复杂度等方面综合考量,作为后起之秀的 Etcd 无疑是其中的 “佼佼者” 。它完全媲美业界“名宿”ZooKeeper,在有些方面,Etcd 甚至超越了 ZooKeeper,如 Etcd 采用的 Raft 协议就要比 ZooKeeper 采用的 Zab 协议简单、易理解。
Etcd 作为 CoreOS 开源项目,有以下的特点。
分布式环境下,多台机器上多个进程对同一个共享资源(数据、文件等)进行操作,如果不做互斥,就有可能出现“余额扣成负数”,或者“商品超卖”的情况。为了解决这个问题,需要分布式锁服务。首先,来看一下分布式锁应该具备哪些条件。
Etcd 的高可用性、强一致性不必多说,前面章节中已经阐明,本节主要介绍 Etcd 支持的以下机制:Watch 机制、Lease 机制、Revision 机制和 Prefix 机制,正是这些机制赋予了 Etcd 实现分布式锁的能力。
put(key, value)
,Key 的 Revision 变为 1,同样的操作,再进行一次,Revision 变为 2;换成 key1 进行 put(key1, value) 操作,Revision 将变为 3;这种机制有一个作用:通过 Revision 的大小就可以知道写操作的顺序。在实现分布式锁时,多个客户端同时抢锁,根据 Revision 号大小依次获得锁,可以避免 “羊群效应” (也称“惊群效应”),实现公平锁。/mylock
的锁,两个争抢它的客户端进行写操作,实际写入的 Key 分别为:key1="/mylock/UUID1",key2="/mylock/UUID2"
,其中,UUID 表示全局唯一的 ID,确保两个 Key 的唯一性。很显然,写操作都会成功,但返回的 Revision 不一样,那么,如何判断谁获得了锁呢?通过前缀“/mylock” 查询,返回包含两个 Key-Value 对的 Key-Value 列表,同时也包含它们的 Revision,通过 Revision 大小,客户端可以判断自己是否获得锁,如果抢锁失败,则等待锁释放(对应的 Key 被删除或者租约过期),然后再判断自己是否可以获得锁。jetcd 是 Etcd 的 Java 客户端,为 Etcd 的特性提供了丰富的接口,使用起来非常方便。不过,需要注意的是,jetcd 支持 Etcd V3 版本(Etcd 较早的版本是 V2),运行环境需 Java 1.8 及以上。
首先创建一个 Maven 工程,导入 jetcd 依赖。目前,jetcd 最新的版本为:0.0.2
<dependency>
<groupId>io.etcd</groupId>
<artifactId>jetcd-core</artifactId>
<version>${jetcd-version}</version>
</dependency>
(1)Key-Value 客户端
Etcd 作为一个 Key-Value 存储系统,Key-Value 客户端是最基本的客户端,进行 Put、Get、Delete 操作。
// 创建客户端,本例中Etcd服务端为单机模式
Client client = Client.builder().endpoints("http://localhost:2379").build();
KV kvClient = client.getKVClient();
// 对String类型的Key-Value进行类型转换
ByteSequence key = ByteSequence.fromString("test_key");
ByteSequence value = ByteSequence.fromString("test_value");
// put操作,等待操作完成
kvClient.put(key, value).get();
// get操作,等待操作完成
CompletableFuture<GetResponse> getFuture = kvClient.get(key);
GetResponse response = getFuture.get();
// delete操作,等待操作完成
kvClient.delete(key).get();
(2)Lease 客户端
Lease 客户端,即租约客户端,用于创建租约、续约、解约,以及检索租约的详情,如租约绑定的键值等信息。
// 创建客户端,本例中Etcd服务端为单机模式
Client client = Client.builder().endpoints("http://localhost:2379").build();
// 创建Lease客户端
Lease leaseClient = client.getLeaseClient();
// 创建一个60s的租约,等待完成,超时设置阈值30s
Long leaseId = leaseClient.grant(60).get(30, TimeUnit.SECONDS).getID();
// 使指定的租约永久有效,即永久租约
leaseClient.keepAlive(leaseId);
// 续约一次
leaseClient.keepAliveOnce(leaseId);
// 解除租约,绑定该租约的键值将被删除
leaseClient.revoke(leaseId);
// 检索指定ID对应的租约的详细信息
LeaseTimeToLiveResponse lTRes = leaseClient.timeToLive(leaseId, LeaseOption.newBuilder().withAttachedKeys().build()).get();
(3)Watch 客户端
监听客户端,可为 Key 或者目录(前缀机制)创建 Watcher,Watcher 可以监听 Key 的事件(Put、Delete 等),如果事件发生,可以通知客户端,客户端采取某些措施。
// 创建客户端,本例中Etcd服务端为单机模式
Client client = Client.builder().endpoints("http://localhost:2379").build();
// 对String类型的Key进行类型转换
ByteSequence key = ByteSequence.fromString("test_key");
// 创建Watch客户端
Watch watchClient = client.getWatchClient();
// 为Key创建一个Watcher
Watcher watcher = watch.watch(key);
// 开始listen,如果监听的Key有事件(如删除、更新等)发生则返回
WatchResponse response = null;
try
{
response = watcher.listen();
}
catch (InterruptedException e)
{
System.out.println("Failed to listen key:"+e);
}
if(response != null)
{
List<WatchEvent> eventlist = res.getEvents();
// 解析eventlist,判断是否为自己关注的事件,作进一步操作
// To do something
}
(4)Cluster 客户端
为了保障高可用性,实际应用中 Etcd 应工作于集群模式下,集群节点数量为大于 3 的奇数,为了灵活的管理集群,jetcd 提供了集群管理客户端,支持获取集群成员列表、增加成员、删除成员等操作。
// 创建客户端,本例中Etcd服务端为单机模式
Client client = Client.builder().endpoints("http://localhost:2379").build();
// 创建Cluster客户端
Cluster clusterClient = client.getClusterClient();
// 获取集群成员列表
List<Member> list = clusterClient.listMember().get().getMembers();
// 向集群中添加成员
String tempAddr = "http://localhost:2389";
List<String> peerAddrs = new ArrayList<String>();
peerAddrs.add(tempAddr);
clusterClient.addMember(peerAddrs);
// 根据成员ID删除成员
long memberID = 8170086329776576179L;
clusterClient.removeMember(memberID);
// 更新
clusterClient.updateMember(memberID, peerAddrs);
(5)Maintenance 客户端
Etcd 本质上是一个 Key-Value 存储系统,在一系列的 Put、Get、Delete 及 Compact 操作后,集群节点可能出现键空间不足等告警,通过 Maintenance 客户端,可以进行告警查询、告警解除、整理压缩碎片等操作。
// 创建客户端,本例中Etcd服务端为单机模式
Client client = Client.builder().endpoints("http://localhost:2379").build();
// 创建一个Maintenance 客户端
Maintenance maintClient = client.getMaintenanceClient();
// 获取指定节点的状态,对res做进一步解析可得节点状态详情
StatusResponse res = maintClient.statusMember("http://localhost:2379").get();
// 对指定的节点进行碎片整理,在压缩键空间之后,后端数据库可能呈现内部碎片,需进行整理
// 整理碎片是一个“昂贵”的操作,应避免同时对多个节点进行整理
maintClient.defragmentMember("http://localhost:2379").get();
// 获取所有活跃状态的键空间告警
List<AlarmMember> alarmList = maintClient.listAlarms().get().getAlarms();
// 解除指定键空间的告警
maintClient.alarmDisarm(alarmList.get(0));
通过前面章节的铺垫,对于如何用 Etcd 实现分布式锁,相信读者已经心中有数,理解了原理,实现反而是简单的。在此,我给出一个 Demo 供读者参考。
下面描述了使用 Etcd 实现分布式锁的业务流程,假设对某个共享资源设置的锁名为:/lock/mylock
。
步骤1:准备
客户端连接 Etcd,以 /lock/mylock
为前缀创建全局唯一的 Key,假设第一个客户端对应的 Key="/lock/mylock/UUID1"
,第二个为 Key="/lock/mylock/UUID2"
;客户端分别为自己的 Key 创建租约 Lease,租约的长度根据业务耗时确定,假设为 15s。
步骤2:创建定时任务作为租约的“心跳”
在一个客户端持有锁期间,其它客户端只能等待,为了避免等待期间租约失效,客户端需创建一个定时任务作为“心跳”进行续约。此外,如果持有锁期间客户端崩溃,心跳停止,Key 将因租约到期而被删除,从而锁释放,避免死锁。
步骤3:客户端将自己全局唯一的 Key 写入 Etcd
进行 Put 操作,将步骤 1 中创建的 Key 绑定租约写入 Etcd,根据 Etcd 的 Revision 机制,假设两个客户端 Put 操作返回的 Revision 分别为1、2,客户端需记录 Revision 用以接下来判断自己是否获得锁。
步骤4:客户端判断是否获得锁
客户端以前缀 /lock/mylock
读取 Key-Value 列表(Key-Value 中带有 Key 对应的 Revision),判断自己 Key 的 Revision 是否为当前列表中最小的,如果是则认为获得锁;否则监听列表中前一个 Revision 比自己小的 Key 的删除事件,一旦监听到删除事件或者因租约失效而删除的事件,则自己获得锁。
步骤5:执行业务
获得锁后,操作共享资源,执行业务代码。
步骤6:释放锁
完成业务流程后,删除对应的 Key 释放锁。
根据上一节中介绍的业务流程,基于Etcd的分布式锁示意图如下。
业务流程图大家可参看这篇文章《Zookeeper 分布式锁实现原理》。
Demo 代码如下:
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import com.coreos.jetcd.Client;
import com.coreos.jetcd.KV;
import com.coreos.jetcd.Lease;
import com.coreos.jetcd.Watch.Watcher;
import com.coreos.jetcd.options.GetOption;
import com.coreos.jetcd.options.GetOption.SortTarget;
import com.coreos.jetcd.options.PutOption;
import com.coreos.jetcd.watch.WatchEvent;
import com.coreos.jetcd.watch.WatchResponse;
import com.coreos.jetcd.data.ByteSequence;
import com.coreos.jetcd.data.KeyValue;
import com.coreos.jetcd.kv.PutResponse;
import java.util.UUID;
/**
* Etcd 客户端代码,用多个线程“抢锁”模拟分布式系统中,多个进程“抢锁”
*
*/
public class EtcdClient
{
public static void main(String[] args) throws InterruptedException, ExecutionException,
TimeoutException, ClassNotFoundException
{
// 创建Etcd客户端,Etcd服务端为单机模式
Client client = Client.builder().endpoints("http://localhost:2379").build();
// 对于某共享资源制定的锁名
String lockName = "/lock/mylock";
// 模拟分布式场景下,多个进程“抢锁”
for (int i = 0; i < 3; i++)
{
new MyThread(lockName, client).start();
}
}
/**
* 加锁方法,返回值为加锁操作中实际存储于Etcd中的Key,即:lockName+UUID,
* 根据返回的Key,可删除存储于Etcd中的键值对,达到释放锁的目的。
*
* @param lockName
* @param client
* @param leaseId
* @return
*/
public static String lock(String lockName, Client client, long leaseId)
{
// lockName作为实际存储在Etcd的中的Key的前缀,后缀是一个全局唯一的ID,从而确保:对于同一个锁,不同进程存储的Key具有相同的前缀,不同的后缀
StringBuffer strBufOfRealKey = new StringBuffer();
strBufOfRealKey.append(lockName);
strBufOfRealKey.append("/");
strBufOfRealKey.append(UUID.randomUUID().toString());
// 加锁操作实际上是一个put操作,每一次put操作都会使revision增加1,因此,对于任何一次操作,这都是唯一的。(get,delete也一样)
// 可以通过revision的大小确定进行抢锁操作的时序,先进行抢锁的,revision较小,后面依次增加。
// 用于记录自己“抢锁”的Revision,初始值为0L
long revisionOfMyself = 0L;
KV kvClient = client.getKVClient();
// lock,尝试加锁,加锁只关注Key,value不为空即可。
// 注意:这里没有考虑可靠性和重试机制,实际应用中应考虑put操作而重试
try
{
PutResponse putResponse = kvClient
.put(ByteSequence.fromString(strBufOfRealKey.toString()),
ByteSequence.fromString("value"),
PutOption.newBuilder().withLeaseId(leaseId).build())
.get(10, TimeUnit.SECONDS);
// 获取自己加锁操作的Revision号
revisionOfMyself = putResponse.getHeader().getRevision();
}
catch (InterruptedException | ExecutionException | TimeoutException e1)
{
System.out.println("[error]: lock operation failed:" + e1);
}
try
{
// lockName作为前缀,取出所有键值对,并且根据Revision进行升序排列,版本号小的在前
List<KeyValue> kvList = kvClient.get(ByteSequence.fromString(lockName),
GetOption.newBuilder().withPrefix(ByteSequence.fromString(lockName))
.withSortField(SortTarget.MOD).build())
.get().getKvs();
// 如果自己的版本号最小,则表明自己持有锁成功,否则进入监听流程,等待锁释放
if (revisionOfMyself == kvList.get(0).getModRevision())
{
System.out.println("[lock]: lock successfully. [revision]:" + revisionOfMyself);
// 加锁成功,返回实际存储于Etcd中的Key
return strBufOfRealKey.toString();
}
else
{
// 记录自己加锁操作的前一个加锁操作的索引,因为只有前一个加锁操作完成并释放,自己才能获得锁
int preIndex = 0;
for (int index = 0; index < kvList.size(); index++)
{
if (kvList.get(index).getModRevision() == revisionOfMyself)
{
preIndex = index - 1;// 前一个加锁操作,故比自己的索引小1
}
}
// 根据索引,获得前一个加锁操作对应的Key
ByteSequence preKeyBS = kvList.get(preIndex).getKey();
// 创建一个Watcher,用于监听前一个Key
Watcher watcher = client.getWatchClient().watch(preKeyBS);
WatchResponse res = null;
// 监听前一个Key,将处于阻塞状态,直到前一个Key发生delete事件
// 需要注意的是,一个Key对应的事件不只有delete,不过,对于分布式锁来说,除了加锁就是释放锁
// 因此,这里只要监听到事件,必然是delete事件或者Key因租约过期而失效删除,结果都是锁被释放
try
{
System.out.println("[lock]: keep waiting until the lock is released.");
res = watcher.listen();
}
catch (InterruptedException e)
{
System.out.println("[error]: failed to listen key.");
}
// 为了便于读者理解,此处写一点冗余代码,判断监听事件是否为DELETE,即释放锁
List<WatchEvent> eventlist = res.getEvents();
for (WatchEvent event : eventlist)
{
// 如果监听到DELETE事件,说明前一个加锁操作完成并已经释放,自己获得锁,返回
if (event.getEventType().toString().equals("DELETE"))
{
System.out.println("[lock]: lock successfully. [revision]:" + revisionOfMyself);
return strBufOfRealKey.toString();
}
}
}
}
catch (InterruptedException | ExecutionException e)
{
System.out.println("[error]: lock operation failed:" + e);
}
return strBufOfRealKey.toString();
}
/**
* 释放锁方法,本质上就是删除实际存储于Etcd中的Key
*
* @param lockName
* @param client
*/
public static void unLock(String realLockName, Client client)
{
try
{
client.getKVClient().delete(ByteSequence.fromString(realLockName)).get(10,
TimeUnit.SECONDS);
System.out.println("[unLock]: unlock successfully.[lockName]:" + realLockName);
}
catch (InterruptedException | ExecutionException | TimeoutException e)
{
System.out.println("[error]: unlock failed:" + e);
}
}
/**
* 自定义一个线程类,模拟分布式场景下多个进程 "抢锁"
*/
public static class MyThread extends Thread
{
private String lockName;
private Client client;
MyThread(String lockName, Client client)
{
this.client = client;
this.lockName = lockName;
}
@Override
public void run()
{
// 创建一个租约,有效期15s
Lease leaseClient = client.getLeaseClient();
Long leaseId = null;
try
{
leaseId = leaseClient.grant(15).get(10, TimeUnit.SECONDS).getID();
}
catch (InterruptedException | ExecutionException | TimeoutException e1)
{
System.out.println("[error]: create lease failed:" + e1);
return;
}
// 创建一个定时任务作为“心跳”,保证等待锁释放期间,租约不失效;
// 同时,一旦客户端发生故障,心跳便会中断,锁也会应租约过期而被动释放,避免死锁
ScheduledExecutorService service = Executors.newSingleThreadScheduledExecutor();
// 续约心跳为12s,仅作为举例
service.scheduleAtFixedRate(new KeepAliveTask(leaseClient, leaseId), 1, 12, TimeUnit.SECONDS);
// 1. try to lock
String realLoclName = lock(lockName, client, leaseId);
// 2. to do something
try
{
Thread.sleep(6000);
}
catch (InterruptedException e2)
{
System.out.println("[error]:" + e2);
}
// 3. unlock
service.shutdown();// 关闭续约的定时任务
unLock(realLoclName, client);
}
}
/**
* 在等待其它客户端释放锁期间,通过心跳续约,保证自己的Key-Value不会失效
*
*/
public static class KeepAliveTask implements Runnable
{
private Lease leaseClient;
private long leaseId;
KeepAliveTask(Lease leaseClient, long leaseId)
{
this.leaseClient = leaseClient;
this.leaseId = leaseId;
}
@Override
public void run()
{
leaseClient.keepAliveOnce(leaseId);
}
}
}
Demo 运行结果如下:
[lock]: lock successfully. [revision]:44
[lock]: keep waiting until the lock is released.
[lock]: keep waiting until the lock is released.
[unLock]: unlock successfully.
[lock]: lock successfully. [revision]:45
[unLock]: unlock successfully.
[lock]: lock successfully. [revision]:46
[unLock]: unlock successfully.
Etcd 最新版本提供了支持分布式锁的基础接口,其本质就是将第 3 节(路线一)中介绍的实现细节进行了封装。单从使用的角度来看,这是非常有益的,大大降低了分布式锁的实现难度。但,与此同时,简化的接口也无形中为用户理解内部原理设置了屏障。
在介绍 jetcd 提供的 Lock 客户端之前,我们先用 Etcd 官方提供的 Go 语言客户端(etcdctl)验证一下分布式锁的实现原理。解压官方提供的 Etcd 安装包,里面有两个可执行文件:etcd 和 etcdctl,其中 etcd 是服务端,etcdctl 是客户端。在服务端启动的前提下,执行以下命令验证分布式锁原理。
(1)分别开启两个窗口,进入 etcdctl 所在目录,执行以下命令,显式指定 API 版本为 V3,老版本 V2 不支持分布式锁接口。
export ETCDCTL_API=3
(2)分别在两个窗口执行相同的加锁命令:
./etcdctl.exe lock mylock
(3)可以观察到,只有一个加锁成功,并返回了实际存储与 Etcd 中 Key 值:
$ ./etcdctl.exe lock mylock
mylock/694d65eb367c7ec4
(4)在加锁成功的窗口执行命令:Ctrl+c,释放锁;与此同时,另一个窗口加锁成功,如下所示:
$ ./etcdctl.exe lock mylock
mylock/694d65eb367c7ec8
很明显,同样的锁名“mylock”,两个客户端分别进行加锁操作,实际存储于 Etcd 中的 Key 并不是 “mylock”,而是以 “mylock” 为前缀,分别加了一个全局唯一的 ID。是不是和 “路线一” 中介绍得原理一致呢。
作为 Etcd 的 Java 客户端,jetcd 全面支持 Etcd 的 V3 接口,其中分布式锁相关的接口如下。看上去很简单,但事实上存在一个问题:租约没有心跳机制,在等待其它客户端释放锁期间,自己的租约存在过期的风险。鉴于此,需要进行改造。抛砖引玉,我在 4.3 节中提供了一个 Demo 供读者参考。
// 创建客户端,本例中Etcd服务端为单机模式
Client client = Client.builder().endpoints("http://localhost:2379").build();
// 创建Lock客户端
Lock lockClient = client.getLockClient();
// 创建Lease客户端,并创建一个有效期为30s的租约
Lease leaseClient = client.getLeaseClient();
long leaseId = leaseClient.grant(30).get().getID();
// 加、解锁操作
try
{
// 调用lock接口,加锁,并绑定租约
lockClient.lock(ByteSequence.fromString("lockName"), leaseId).get();
// 调用unlock接口,解锁
lockClient.unlock(ByteSequence.fromString(lockName)).get();
}
catch (InterruptedException | ExecutionException e1)
{
System.out.println("[error]: lock failed:" + e1);
}
第一部分:分布式锁实现
代码如下:
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import com.coreos.jetcd.Client;
import com.coreos.jetcd.Lease;
import com.coreos.jetcd.Lock;
import com.coreos.jetcd.data.ByteSequence;
public class DistributedLock
{
private static DistributedLock lockProvider = null;
private static Object mutex = new Object();
private Client client;
private Lock lockClient;
private Lease leaseClient;
private DistributedLock()
{
super();
// 创建Etcd客户端,本例中Etcd集群只有一个节点
this.client = Client.builder().endpoints("http://localhost:2379").build();
this.lockClient = client.getLockClient();
this.leaseClient = client.getLeaseClient();
}
public static DistributedLock getInstance()
{
synchronized (mutex)
{
if (null == lockProvider)
{
lockProvider = new DistributedLock();
}
}
return lockProvider;
}
/**
* 加锁操作,需要注意的是,本例中没有加入重试机制,加锁失败将直接返回。
*
* @param lockName: 针对某一共享资源(数据、文件等)制定的锁名
* @param TTL : Time To Live,租约有效期,一旦客户端崩溃,可在租约到期后自动释放锁
* @return LockResult
*/
public LockResult lock(String lockName, long TTL)
{
LockResult lockResult = new LockResult();
/*1.准备阶段*/
// 创建一个定时任务作为“心跳”,保证等待锁释放期间,租约不失效;
// 同时,一旦客户端发生故障,心跳便会停止,锁也会因租约过期而被动释放,避免死锁
ScheduledExecutorService service = Executors.newSingleThreadScheduledExecutor();
// 初始化返回值lockResult
lockResult.setIsLockSuccess(false);
lockResult.setService(service);
// 记录租约ID,初始值设为 0L
Long leaseId = 0L;
/*2.创建租约*/
// 创建一个租约,租约有效期为TTL,实际应用中根据具体业务确定。
try
{
leaseId = leaseClient.grant(TTL).get().getID();
lockResult.setLeaseId(leaseId);
// 启动定时任务续约,心跳周期和初次启动延时计算公式如下,可根据实际业务制定。
long period = TTL - TTL / 5;
service.scheduleAtFixedRate(new KeepAliveTask(leaseClient, leaseId), period, period,
TimeUnit.SECONDS);
}
catch (InterruptedException | ExecutionException e)
{
System.out.println("[error]: Create lease failed:" + e);
return lockResult;
}
System.out.println("[lock]: start to lock." + Thread.currentThread().getName());
/*3.加锁操作*/
// 执行加锁操作,并为锁对应的Key绑定租约
try
{
lockClient.lock(ByteSequence.fromString(lockName), leaseId).get();
}
catch (InterruptedException | ExecutionException e1)
{
System.out.println("[error]: lock failed:" + e1);
return lockResult;
}
System.out.println("[lock]: lock successfully." + Thread.currentThread().getName());
lockResult.setIsLockSuccess(true);
return lockResult;
}
/**
* 解锁操作,释放锁、关闭定时任务、解除租约
*
* @param lockName:锁名
* @param lockResult:加锁操作返回的结果
*/
public void unLock(String lockName, LockResult lockResult)
{
System.out.println("[unlock]: start to unlock." + Thread.currentThread().getName());
try
{
// 释放锁
lockClient.unlock(ByteSequence.fromString(lockName)).get();
// 关闭定时任务
lockResult.getService().shutdown();
// 删除租约
if (lockResult.getLeaseId() != 0L)
{
leaseClient.revoke(lockResult.getLeaseId());
}
}
catch (InterruptedException | ExecutionException e)
{
System.out.println("[error]: unlock failed: " + e);
}
System.out.println("[unlock]: unlock successfully." + Thread.currentThread().getName());
}
/**
* 在等待其它客户端释放锁期间,通过心跳续约,保证自己的锁对应租约不会失效
*
*/
public static class KeepAliveTask implements Runnable
{
private Lease leaseClient;
private long leaseId;
KeepAliveTask(Lease leaseClient, long leaseId)
{
this.leaseClient = leaseClient;
this.leaseId = leaseId;
}
@Override
public void run()
{
// 续约一次
leaseClient.keepAliveOnce(leaseId);
}
}
/**
* 该class用于描述加锁的结果,同时携带解锁操作所需参数
*
*/
public static class LockResult
{
private boolean isLockSuccess;
private long leaseId;
private ScheduledExecutorService service;
LockResult()
{
super();
}
public void setIsLockSuccess(boolean isLockSuccess)
{
this.isLockSuccess = isLockSuccess;
}
public void setLeaseId(long leaseId)
{
this.leaseId = leaseId;
}
public void setService(ScheduledExecutorService service)
{
this.service = service;
}
public boolean getIsLockSuccess()
{
return this.isLockSuccess;
}
public long getLeaseId()
{
return this.leaseId;
}
public ScheduledExecutorService getService()
{
return this.service;
}
}
}
第二部分:测试代码
代码如下:
public class DistributedLockTest
{
public static void main(String[] args)
{
// 模拟分布式场景下,多个进程 “抢锁”
for (int i = 0; i < 5; i++)
{
new MyThread().start();
}
}
public static class MyThread extends Thread
{
@Override
public void run()
{
String lockName = "/lock/mylock";
// 1. 加锁
LockResult lockResult = DistributedLock.getInstance().lock(lockName, 30);
// 2. 执行业务
if (lockResult.getIsLockSuccess())
{
// 获得锁后,执行业务,用sleep方法模拟.
try
{
Thread.sleep(10000);
}
catch (InterruptedException e)
{
System.out.println("[error]:" + e);
}
}
// 3. 解锁
DistributedLock.getInstance().unLock(lockName, lockResult);
}
}
}
第三部分:测试结果
[lock]: start to lock.Thread-4
[lock]: start to lock.Thread-3
[lock]: start to lock.Thread-1
[lock]: start to lock.Thread-0
[lock]: start to lock.Thread-2
[lock]: lock successfully.Thread-3
[unlock]: start to unlock.Thread-3
[unlock]: unlock successfully.Thread-3
[lock]: lock successfully.Thread-2
[unlock]: start to unlock.Thread-2
[unlock]: unlock successfully.Thread-2
[lock]: lock successfully.Thread-1
[unlock]: start to unlock.Thread-1
[unlock]: unlock successfully.Thread-1
[lock]: lock successfully.Thread-0
[unlock]: start to unlock.Thread-0
[unlock]: unlock successfully.Thread-0
[lock]: lock successfully.Thread-4
[unlock]: start to unlock.Thread-4
[unlock]: unlock successfully.Thread-4
© 2019 - 2023 Liangliang Lee. Powered by gin and hexo-theme-book.