从这篇开始,我们学习 Sentinel 提供的几个实现降级功能的 ProcessorSlot,这些 ProcessorSlot 检查实时指标数据是否达到规则所配置的阈值,当达到阈值时,或抛出 Block 异常或采取流量效果控制策略处理超阈值的流量。
Sentinel 实现限流降级、熔断降级、黑白名单限流降级、系统自适应限流降级以及热点参数限流降级都是由 ProcessorSlot、Checker、Rule、RuleManager 组合完成。ProcessorSlot 作为调用链路的切入点,负责调用 Checker 检查当前请求是否可以放行;Checker 则根据资源名称从 RuleManager 中拿到为该资源配置的 Rule(规则),取 ClusterNode 统计的实时指标数据与规则对比,如果达到规则的阈值则抛出 Block 异常,抛出 Block 异常意味着请求被拒绝,也就实现了限流或熔断。
可以总结为以下三个步骤:
Sentinel 在最初的框架设计上,将是否允许请求通过的判断行为交给 Rule 去实现,所以将 Rule 定义成了接口。Rule 接口只定义了一个 passCheck 方法,即判断当前请求是否允许通过。Rule 接口的定义如下:
public interface Rule {
boolean passCheck(Context context, DefaultNode node, int count, Object... args);
}
因为规则是围绕资源配置的,一个规则只对某个资源起作用,因此 Sentinel 提供了一个抽象规则配置类 AbstractRule,AbstractRule 的定义如下:
public abstract class AbstractRule implements Rule {
private String resource;
private String limitApp;
// ....
}
Rule、AbstractRule 与其它实现类的关系如下图所示:
FlowRule 是限流规则配置类,FlowRule 继承 AbstractRule 并实现 Rule 接口。FlowRule 源码如下,非完整源码,与实现集群限流相关的字段暂时去掉了。
public class FlowRule extends AbstractRule {
// 限流阈值类型 qps|threads
private int grade = RuleConstant.FLOW_GRADE_QPS;
// 限流阈值
private double count;
// 基于调用关系的限流策略
private int strategy = RuleConstant.STRATEGY_DIRECT;
// 配置 strategy 使用,入口资源名称
private String refResource;
// 流量控制效果(直接拒绝、Warm Up、匀速排队)
private int controlBehavior = RuleConstant.CONTROL_BEHAVIOR_DEFAULT;
// 冷启动时长(预热时长),单位秒
private int warmUpPeriodSec = 10;
// 最大排队时间。
private int maxQueueingTimeMs = 500;
// 流量控制器
private TrafficShapingController controller;
//.....
@Override
public boolean passCheck(Context context, DefaultNode node, int acquireCount, Object... args) {
return true;
}
}
Rule 定义的行为应该只是 Sentinel 在最初搭建框架时定义的约定,Sentinel 自己也并没有都遵守这个约定,很多规则并没有将 passCheck 交给 Rule 去实现,Checker 可能是后续引入的,用于替代 Rule 的 passCheck 行为。
Sentinel 中用来管理规则配置的类都以规则类的名称+Manger 命名,除此之外,并没有对规则管理器有什么行为上的约束。
用来加载限流规则配置以及缓存限流规则配置的类为 FlowRuleManager,其部分源码如下:
public class FlowRuleManager {
// 缓存规则
private static final Map<String, List<FlowRule>> flowRules = new ConcurrentHashMap<String, List<FlowRule>>();
// 获取所有规则
static Map<String, List<FlowRule>> getFlowRuleMap() {
return flowRules;
}
// 更新规则
public static void loadRules(List<FlowRule> rules) {
// 更新静态字段 flowRules
}
}
FlowSlot 是实现限流功能的切入点,它作为 ProcessorSlot 插入到 ProcessorSlotChain 链表中,在 entry 方法中调用 Checker 去判断是否需要拒绝当前请求,如果需要拒绝请求则抛出 Block 异常。FlowSlot 的源码如下:
public class FlowSlot extends AbstractLinkedProcessorSlot<DefaultNode> {
private final FlowRuleChecker checker;
public FlowSlot() {
this(new FlowRuleChecker());
}
// 规则生产者,一个 Function
private final Function<String, Collection<FlowRule>> ruleProvider = new Function<String, Collection<FlowRule>>() {
// 参数为资源名称
@Override
public Collection<FlowRule> apply(String resource) {
Map<String, List<FlowRule>> flowRules = FlowRuleManager.getFlowRuleMap();
return flowRules.get(resource);
}
};
@Override
public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
boolean prioritized, Object... args) throws Throwable {
checkFlow(resourceWrapper, context, node, count, prioritized);
fireEntry(context, resourceWrapper, node, count, prioritized, args);
}
// check 是否限流
void checkFlow(ResourceWrapper resource, Context context, DefaultNode node, int count, boolean prioritized)
throws BlockException {
checker.checkFlow(ruleProvider, resource, context, node, count, prioritized);
}
@Override
public void exit(Context context, ResourceWrapper resourceWrapper, int count, Object... args) {
fireExit(context, resourceWrapper, count, args);
}
}
FlowSlot 在构造方法中创建 FlowRuleChecker,并在 entry 方法中调用 FlowRuleChecker#checkFlow 方法判断是否需要拦截当前请求。在调用 FlowRuleChecker#checkFlow 方法时传入了一个 Function 接口实例,FlowRuleChecker 可调用该 Function 的 apply 方法从 FlowRuleManager 获取资源的所有规则配置,当然,最终还是调用 FlowRuleManager#getFlowRuleMap 方法从 FlowRuleManager 获取。
FlowRuleChecker 与 FlowRuleManager 一样,Sentinel 也并没有约定 Checker 必须具有哪些行为,只是在命名上约定 Checker 类需以规则类的名称 + “Checker”命名。FlowRuleChecker 负责判断是否需要拒绝当前请求,由于 FlowRuleChecker 类的源码很多,所以我们按过程分析用到的每个方法。
首先是由 FlowSlot 调用的 checkFlow 方法,该方法源码如下:
public void checkFlow(Function<String, Collection<FlowRule>> ruleProvider, ResourceWrapper resource,
Context context, DefaultNode node, int count, boolean prioritized) throws BlockException {
if (ruleProvider == null || resource == null) {
return;
}
// (1)
Collection<FlowRule> rules = ruleProvider.apply(resource.getName());
if (rules != null) {
// (2)
for (FlowRule rule : rules) {
// (3)
if (!canPassCheck(rule, context, node, count, prioritized)) {
throw new FlowException(rule.getLimitApp(), rule);
}
}
}
}
checkFlow 方法我们分三步分析:
canPassCheck 即“can pass check”,意思是检查是否允许通过,后面我们也统一将“检查是否允许当前请求通过”使用 canPassCheck 代指,canPassCheck 方法返回 true 说明允许请求通过,反之则不允许通过。canPassCheck 方法源码如下:
public boolean canPassCheck(FlowRule rule, Context context, DefaultNode node, int acquireCount,boolean prioritized) {
// (1)
String limitApp = rule.getLimitApp();
if (limitApp == null) {
return true;
}
// (2)
if (rule.isClusterMode()) {
return passClusterCheck(rule, context, node, acquireCount, prioritized);
}
// (3)
return passLocalCheck(rule, context, node, acquireCount, prioritized);
}
passLocalCheck 方法源码如下:
private static boolean passLocalCheck(FlowRule rule, Context context, DefaultNode node, int acquireCount,
boolean prioritized) {
// (1)
Node selectedNode = selectNodeByRequesterAndStrategy(rule, context, node);
if (selectedNode == null) {
return true;
}
// (2)
return rule.getRater()
// (3)
.canPass(selectedNode, acquireCount, prioritized);
}
selectNodeByRequesterAndStrategy 方法的实现逻辑很复杂,实现根据限流规则配置的 limitApp 与 strategy 选择一个 StatisticNode,两个字段的组合情况可以有 6 种。selectNodeByRequesterAndStrategy 方法源码如下:
static Node selectNodeByRequesterAndStrategy(FlowRule rule, Context context, DefaultNode node) {
// 限流规则针对哪个来源生效
String limitApp = rule.getLimitApp();
// 基于调用关系的限流策略
int strategy = rule.getStrategy();
// 远程来源
String origin = context.getOrigin();
if (limitApp.equals(origin) && filterOrigin(origin)) {
if (strategy == RuleConstant.STRATEGY_DIRECT) {
//(1)
return context.getOriginNode();
}
//(2)
return selectReferenceNode(rule, context, node);
}
else if (RuleConstant.LIMIT_APP_DEFAULT.equals(limitApp)) {
if (strategy == RuleConstant.STRATEGY_DIRECT) {
//(3)
return node.getClusterNode();
}
//(4)
return selectReferenceNode(rule, context, node);
}
else if (RuleConstant.LIMIT_APP_OTHER.equals(limitApp)
&& FlowRuleManager.isOtherOrigin(origin, rule.getResource())) {
if (strategy == RuleConstant.STRATEGY_DIRECT) {
//(5)
return context.getOriginNode();
}
//(6)
return selectReferenceNode(rule, context, node);
}
return null;
}
如果当前限流规则的 limitApp 为 default,则说明该限流规则对任何调用来源都生效,针对所有调用来源限流,否则只针对指定调用来源限流。
\1. 如果调用来源与当前限流规则的 limitApp 相等,且 strategy 为 STRATEGY_DIRECT,则使用调用来源的 StatisticNode,实现针对调用来源限流。例如,当前服务名称为 demo-srv-b,请求调用来源为 demo-srv-a 服务,资源名称为“/hello”,那么 origin 的 StatisticNode 用于针对访问来源为 demo-srv-a 的“/hello”资源的指标数据统计。
\2. 前置条件与(1)相同,依然是针对来源限流。
\3. 当 limitApp 为 default 时,针对所有来源限流。如果 strategy 为 STRATEGY_DIRECT,则使用当前资源的 ClusterNode。
\4. 前置条件与(3)相同,依然是针对所有来源限流。
\5. 如果 limitApp 为 other,且该资源的所有限流规则都没有针对当前的调用来源限流。如果 strategy 为 STRATEGY_DIRECT,则使用 origin 的 StatisticNode。
\6. 前置条件与(5)一样。
从 selectNodeByRequesterAndStrategy 方法可以看出,Sentinel 之所以针对每个资源统计访问来源的指标数据,也是为了实现对丰富的限流策略的支持。
因为每个调用来源服务对同一个资源的访问频率都是不同的,针对调用来源限流可限制并发量较高的来源服务的请求,而对并发量低的来源服务的请求可不限流,或者是对一些并没有那么重要的来源服务限流。
当两个资源之间具有资源争抢关系的时候,使用 STRATEGY_RELATE 调用关系限流策略可避免多个资源之间过度的对同一资源争抢。例如查询订单信息和用户下单两个分别读和写数据库订单表的资源,如下图所示。
我们可以给执行读表操作的资源设置限流规则实现写优先的目的,查询订单信息的资源根据用户下单的资源的实时指标数据限流,当写表操作过于频繁时,读表操作的请求就会被限流。
© 2019 - 2023 Liangliang Lee. Powered by gin and hexo-theme-book.