最后这三篇文章,我将介绍 Oracle Labs 的 GraalVM 项目。
GraalVM 是一个高性能的、支持多种编程语言的执行环境。它既可以在传统的 OpenJDK 上运行,也可以通过 AOT(Ahead-Of-Time)编译成可执行文件单独运行,甚至可以集成至数据库中运行。
除此之外,它还移除了编程语言之间的边界,并且支持通过即时编译技术,将混杂了不同的编程语言的代码编译到同一段二进制码之中,从而实现不同语言之间的无缝切换。
今天这一篇,我们就来讲讲 GraalVM 的基石 Graal 编译器。
在之前的篇章中,特别是介绍即时编译技术的第二部分,我们反反复复提到了 Graal 编译器。这是一个用 Java 写就的即时编译器,它从 Java 9u 开始便被集成自 JDK 中,作为实验性质的即时编译器。
Graal 编译器可以通过 Java 虚拟机参数-XX:+UnlockExperimentalVMOptions -XX:+UseJVMCICompiler
启用。当启用时,它将替换掉 HotSpot 中的 C2 编译器,并响应原本由 C2 负责的编译请求。
在今天的文章中,我将详细跟你介绍一下 Graal 与 Java 虚拟机的交互、Graal 和 C2 的区别以及 Graal 的实现细节。
我们知道,即时编译器是 Java 虚拟机中相对独立的模块,它主要负责接收 Java 字节码,并生成可以直接运行的二进制码。
具体来说,即时编译器与 Java 虚拟机的交互可以分为如下三个方面。
即时编译器通过这三个功能组成了一个响应编译请求、获取编译所需的数据,完成编译并部署的完整编译周期。
传统情况下,即时编译器是与 Java 虚拟机紧耦合的。也就是说,对即时编译器的更改需要重新编译整个 Java 虚拟机。这对于开发相对活跃的 Graal 来说显然是不可接受的。
为了让 Java 虚拟机与 Graal 解耦合,我们引入了Java 虚拟机编译器接口(JVM Compiler Interface,JVMCI),将上述三个功能抽象成一个 Java 层面的接口。这样一来,在 Graal 所依赖的 JVMCI 版本不变的情况下,我们仅需要替换 Graal 编译器相关的 jar 包(Java 9 以后的 jmod 文件),便可完成对 Graal 的升级。
JVMCI 的作用并不局限于完成由 Java 虚拟机发出的编译请求。实际上,Java 程序可以直接调用 Graal,编译并部署指定方法。
Graal 的单元测试便是基于这项技术。为了测试某项优化是否起作用,原本我们需要反复运行某一测试方法,直至 Graal 收到由 Java 虚拟机发出针对该方法的编译请求,而现在我们可以直接指定编译该方法,并进行测试。我们下一篇将介绍的 Truffle 语言实现框架,同样也是基于这项技术的。
Graal 和 C2 最为明显的一个区别是:Graal 是用 Java 写的,而 C2 是用 C++ 写的。相对来说,Graal 更加模块化,也更容易开发与维护,毕竟,连 C2 的作者 Cliff Click 大神都不想重蹈用 C++ 开发 Java 虚拟机的覆辙。
许多开发者会觉得用 C++ 写的 C2 肯定要比 Graal 快。实际上,在充分预热的情况下,Java 程序中的热点代码早已经通过即时编译转换为二进制码,在执行速度上并不亚于静态编译的 C++ 程序。
再者,即便是解释执行 Graal,也仅是会减慢编译效率,而并不影响编译结果的性能。
换句话说,如果 C2 和 Graal 采用相同的优化手段,那么它们的编译结果是一样的。所以,程序达到稳定状态(即不再触发新的即时编译)的性能,也就是峰值性能,将也是一样的。
由于 Java 语言容易开发维护的优势,我们可以很方便地将 C2 的新优化移植到 Graal 中。反之则不然,比如,在 Graal 中被证实有效的部分逃逸分析(partial escape analysis)至今未被移植到 C2 中。
Graal 和 C2 另一个优化上的分歧则是方法内联算法。相对来说,Graal 的内联算法对新语法、新语言更加友好,例如 Java 8 的 lambda 表达式以及 Scala 语言。
我们曾统计过数十个 Java 或 Scala 程序的峰值性能。总体而言,Graal 编译结果的性能要优于 C2。对于 Java 程序来说,Graal 的优势并不明显;对于 Scala 程序来说,Graal 的性能优势达到了 10%。
大规模使用 Scala 的 Twitter 便在他们的生产环境中部署了 Graal 编译器,并取得了 11% 的性能提升。(Slides, Video,该数据基于 GraalVM 社区版。)
Graal 编译器将编译过程分为前端和后端两大部分。前端用于实现平台无关的优化(如方法内联),以及小部分平台相关的优化;而后端则负责大部分的平台相关优化(如寄存器分配),以及机器码的生成。
在介绍即时编译技术时,我曾提到过,Graal 和 C2 都采用了 Sea-of-Nodes IR。严格来说,这里指的是 Graal 的前端,而后端采用的是另一种非 Sea-of-Nodes 的 IR。通常,我们将前端的 IR 称之为 High-level IR,或者 HIR;后端的 IR 则称之为 Low-level IR,或者 LIR。
Graal 的前端是由一个个单独的优化阶段(optimization phase)构成的。我们可以将每个优化阶段想象成一个图算法:它会接收一个规则的图,遍历图上的节点并做出优化,并且返回另一个规则的图。前端中的编译阶段除了少数几个关键的之外,其余均可以通过配置选项来开启或关闭。
Graal 编译器前端的优化阶段(局部)
感兴趣的同学可以阅读 Graal repo 里配置这些编译优化阶段的源文件 HighTier.java,MidTier.java,以及LowTier.java。
我们知道,Graal 和 C2 都采用了激进的投机性优化手段(speculative optimization)。
通常,这些优化都基于某种假设(assumption)。当假设出错的情况下,Java 虚拟机会借助去优化(deoptimization)这项机制,从执行即时编译器生成的机器码切换回解释执行,在必要情况下,它甚至会废弃这份机器码,并在重新收集程序 profile 之后,再进行编译。
举个以前讲过的例子,类层次分析。在进行虚方法内联时(或者其他与类层次相关的优化),我们可能会发现某个接口仅有一个实现。
在即时编译过程中,我们可以假设在之后的执行过程中仍旧只有这一个实现,并根据这个假设进行编译优化。当之后加载了接口的另一实现时,我们便会废弃这份机器码。
Graal 与 C2 相比会更加激进。它从设计上便十分青睐这种基于假设的优化手段。在编译过程中,Graal 支持自定义假设,并且直接与去优化节点相关联。
当对应的去优化被触发时,Java 虚拟机将负责记录对应的自定义假设。而 Graal 在第二次编译同一方法时,便会知道该自定义假设有误,从而不再对该方法使用相同的激进优化。
Java 虚拟机的另一个能够大幅度提升性能的特性是 intrinsic 方法,我在之前的篇章中已经详细介绍过了。在 Graal 中,实现高性能的 intrinsic 方法也相对比较简单。Graal 提供了一种替换方法调用的机制,在解析 Java 字节码时会将匹配到的方法调用,替换成对另一个内部方法的调用,或者直接替换为特殊节点。
举例来说,我们可以把比较两个 byte 数组的方法java.util.Arrays.equals(byte[],byte[])
替换成一个特殊节点,用来代表整个数组比较的逻辑。这样一来,当前编译方法所对应的图将被简化,因而其适用于其他优化的可能性也将提升。
Graal 是一个用 Java 写就的、并能够将 Java 字节码转换成二进制码的即时编译器。它通过 JVMCI 与 Java 虚拟机交互,响应由后者发出的编译请求、完成编译并部署编译结果。
对 Java 程序而言,Graal 编译结果的性能略优于 OpenJDK 中的 C2;对 Scala 程序而言,它的性能优势可达到 10%(企业版甚至可以达到 20%!)。这背后离不开 Graal 所采用的激进优化方式。
今天的实践环节,你可以尝试使用附带 Graal 编译器的 JDK。在 Java 10,11 中,你可以通过添加虚拟机参数-XX:+UnlockExperimentalVMOptions -XX:+UseJVMCICompiler
来启用,或者下载我们部署在Oracle OTN上的基于 Java 8 的版本。
在刚开始运行的过程中,Graal 编译器本身需要被即时编译,会抢占原本可用于编译应用代码的计算资源。因此,目前 Graal 编译器的启动性能会较差。最后一篇我会介绍解决方案。
© 2019 - 2023 Liangliang Lee. Powered by gin and hexo-theme-book.